OBSERVATION PLANNING IN IDENTIFYING DYNAMIC PROCESSES

A. G. Pogorelov UDC 517.946

The observation plan concept [7] is considered as a generalization of the ex-
periment~plan concept [8] for soluble problems in identifying processes with
lumped parameters [1-3] and distributed ones [4-6].

I. Processes with Lumped Parameters. 1°. General model form, Let the model structure
be known for a process by virtue of a hypothesis on the mechanism:

Axy=Flk %, 1, 1), €8, <10, T}, xeX < RS, k€K< RY,
() =% €S, = X, ueS, cUc R, F()eC (10, TIxKxXxU), <o, )
y(f) = geY = Co(T, TIxKxXxU; R™), 0KT' <T'<T, m<n,
where the defining operator for the model M is: KXXXU—Y.

2°. Identification Problems. One can formulate the following problems for the model of

()

a) estimation: Mk =y %3 €S u*€Sy, REK, ys=y(f)+8,8; & is the observation error,
Yo EYs = CoUT", TIx KX X x U; R™), Q< &

b) observation problems [9]: My, =y U¥ €Sy, R*CK, %€ X, ys €Ys

¢) joint observation and estimation [10]: Mz =y, 4*€Su, Z={x, HEZ=X XK, €Y.

The solution amounts to solving the extremal problem

(D;_p (@)= QLP‘(MZ, Ys) - min. )

3°. Experiment Plan. TFor the model of (1), the experiment plan ¢ is the set of the plan
net S and the plan measure (normalized weights for the net nodes §):

e=(S, a), (3)
where S=35, x 8, X S =X xU x 0, TI. |

4°. Observation Plan., For problems a)-c), the data sources are not only the observa-
tions yg{t). One can take the graphs for the function and its derivatives {(by the use of re-
covery methoeds) [11, 12] and \rarlous systems of functions [13 18] {o; ()Y ={j=1: 8(t;— 4, j=2:
fiexp(—Bif), J=3 (9,8, ¢, (=8, ..., i=1 2 .. Jc{e@®)} from a certain basic space

{p(t)} for the followmg quantitles derived from the basis of ys(#), t€IT’, T1 3 (-, ¢ (®),
Lo ) T IR

; ; @ (9 (@ (@) ys
(-, ol (@) (-, ®{(r,)), , where (+) denotes the observation functions Ysp Horiy Yorpy Y8, = YR

g=0, 1, 2, co Ty Th being the arguments in the parametric specification of certain selected
Curves Yy, Y, In the sets X and Ut x(%,) = V. (Ta), 4(Tu) = Vu (tu).

On this basis, the observation plan ey is the set
ey =1{Sy, 2y}, (4)

where S, = S;X S;x S;x S, is the observation net, Se={o(-)}- 1s the function net, and ay is
the observatlon plan measure [7]. :

*Here and subsequently, an asterisk means that the quantity is fixed.

tInstead of double subscripts to 7, we use T(-), e.g., T(X) = Ty.
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The observation planning problem consists in choosing Sy and oy on the basis of optimal-
ity criteria considered below. Then the solution to a)-c) on the optimal plan ey* amounts
to solving an extremal problem analogous teo (2), but considered in the generalized denumera-
ble normed space V,-'—zﬂy’ﬁ, r=1,2, .., l=I{}, q),

€DV£ (&)= pvi (M% 2, Ys(e)) - njin, (5)

where V: is defined by the metric

o 0! (4) Do
Ty hEVE p (0 1) = (X § otior9s,0,— 0 @ O i+
ijgv T7
e @ @ ’ 0 @ @
+ S aifqv !(g{)vf - yz’yt’ (pi (Tx))! dtx"sl“ e + j azmv Kg! \;T(u) y2 \ w(u }, (Pz {Tu))z" dtu)l/r,
'Ix ';'

u

On running through the subscripts i, j, and ¢ in some ordered fashion for the values In the
metric ny *}, we get a chain of embedded observation spaces

Ly=V;oVio..oVio..., p=r=1,2 ..., (6)

which implies ordering in the corresponding problems of a)-c) for the sets of quasisolutions
[7, 15]

K109 )= Ka@lE)>. ..o K555 (&), 7
where sz(~) is defined in accordance with [7, 13, 15] as ‘
r

Kt (s(e) = (2€ Z:0,0 (M, 2, (o) <Dt (s B,
[=1,2, ..., <o,
where 1; is the index to the last space in the chain of (6} for which the error & still al-
lows us to obtain the corresponding V! data sources.

II. Processes with Distributed Parameters. 1°. General process model. Let the model
structure be known, the general form being

;= F (b, 1, ty, tye 1), €10, T1, x€X <R,

1<l<< o0, REK= RY,

T ] (8)
0 =y, -, ), wi(E, )ECE (D), D=10, T} x X,

Q< o, 8X=Ur;=r,

where u is the solution to (8), x is the geometrical-coordinate vector, and k is the physical-
constant one. The physically realizable initial conditions u(0, x) = 0€R(X) , and boundary
conditions $(&, u(t, x)) =0, keK<R%, xeI, t €10, Tl, ¥e¥([0, TI X I}, are used with the values
of the vectors k and k in the formulations for the problems a)-g) considered below, where
they may or may not be known. ZLet F(:), g () XeX, Far, Qe=Q ¥,=V (9, and ¥, are
subsets of the parametrically specified initial and boundary condlticns, including cases of
problems with mobile boundaries Q= {0, =®(Po):pu€Py=R®}, ¥p={{p=1 (Pw) prPwCR“’}
n<s. <oo ) be such that the trace vector functions in the model of (8) y (¢, x) = gl (u(t, x)
and Y (¢ %)= g (u(t, x)) have the necessary smoothness order, i.e.,

g, »yey =cd(r, TIx TxQ (X)X‘P (10, T]><F) KxR, I Fer, X=X,

g 1))€YCcQ(iT' T”}XXXQ KX, (10, T1 x DHxKxK),
(g (N =(gi, ..., gn) m.<n.
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The functions g’ (-) and g*{.) are possible forms of the trace for a proceyssk whose experiment-
al observation gt xj=y{t, N+, €C(T", Tl x ['x X x Q,(X) x ¥, (10, T} x I)) % K % K) con~
tains an error §. The model of (8) defines the operator M: Kx Q{X) X ¥ (0, T x I'N'>Y.

2%, TIdentification problems. For the model of (8) we can formulate the following prob-
lems:

a) estimation: ME= gy, k={k F (B} REK=Kx K 0*€Q(X), ¥*€¥(0, TIXI), 4s€Vs;

b) observation problem: Me =y, $*€¥ (), g*EI'?, 0€Q(X), %€Ys

¢} recovery [16, 17]: My =y, 0" Q(X), £* K, ReR, YEF (),

d) joint estimation and recovery: M{k,}?}:%,@*gg(ﬁg, gg f{; PEF (), 1€EVs

e) jointobservation and estimation: M {ow, }:} =y PFET(:), 0 €Q(X), Ze f{', yﬁeYa,

£) joint observation and recovery: M{o, ¥} =y, k*€K, o €Q(X), Ye¥(), y&EY&;_ ) ‘
g) joint observation, recovery, and estimation: Mo, ¥, g} = gs, 0EQX), PEY (), ek, s €Y. .

Problems b)-g) can be solved not only in the formulation of pointwise determination of
w and ¢ on a certain net but also in the parametric-identification formulation with parametric
specification wp=o(p,), Tr=%(py} 1 problems a)-g) may be solved via the extremal problems

) ) . f.DLp (2) = o (M2, yé)?miﬂ, | (9
where z={% o, ¥, {k o}, ..., {k o ¥}

3°. Experiment Plan. For the model of (8), the experiment plan ¢ {s the following set:
) s=={S, a}, {10}

where S= 8. X S;% 8§;X 4% S}EC:JZE?X}\”X{O, TIXQp (X)) X ¥, (10, T T S,cl=rl is a net of
points at boundary T; S; A <=X is a net of points in region X, at the nodes of which one
estimates ys(t, x); Sy is a net of observation times; S, Q,(X), Sy = ¥, ([0, TI x I) being
nets of initial and boundary conditioms correspondingly SQNS%CPM;._ Sy~ S;%CZP\;;). on para-

metric specification). The plamning problem, as in the case of model (1), consists of choos~
ing § and o« {or o in region D) to maximize optimality criteria considered below.-

4°. Observation Plan. For the model of (8) and the problems of a)-g), we can use as
data sources not only the observations yg(t, x) but also the following quantities taken by
analogy with the model of (1): (-, @l(®), (-, @i (%)), (-, @ (%), (* ¢ (ty)) , where (*) denotes the

(g} ) (@ o
2 . : (0 al 3
following functions: Ys, (¢ %), Yo (¢ x), You(a) ¢ %) Y (¢, x), t€Sy $€S USw e=2(w) T U X, Yer

=po(Te) < 3% =P, Ve = Py (ty) = S% < Py. Thesge data sources enable us to introduce the

generalized denumerably normalized space Vy = ﬂ’i”i, for the solution of (9), where ?rz is
H

defined by the metric i, %HhEV: I=I1(j, ¢}, r=1,2, ...,

”

o4 e B @ o) - F e @@
' Vﬁ Y1 )= {2 ‘& Gifqv K!ﬁ{i,vi - .?;’xg,»,;i{ "Pg (i}}t dt. + 5 Qijgy Kyi,\’gm 32,\1{-‘ @ (’f;x‘)}i dﬁcﬁ“ T+
gy T* . .

T

X

=

» T B "
*s A {9} 9} R X
A @) 7 P K v i - i/
voo b j C‘if?zv Kyl‘.w = Yo vy of (v dig -t & Fijgv Kym’*c(ﬂa) T oy B (Tl dvg) . (1)
T ‘ T
Then the solution to a)-g) amounts te the solution on the chosen optimal observation plan
eg== (S, @) Sy=SXSaXSyxX Sy oyi={ali .0, Gim, .-, alfm, oo, o) (In the general-
ized space ’\}’r?'} for the following extremal problems:
@ ;(2) == p 1 (Mex2, ys(e}))—min, : 12)
vy v v N

where 2z is as in (19) and condition (7) applied for (12) in relation to problems a)-g).
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ITJI. Criteria for Choosing the Optimal Observation-Plan Measure. The sets of quasiso-
lutions KV,(-) for the problems of (5) and (12) in the Hilbert spaces can be approximated
, T

iocaliy in the régiOn of point VQZ, 1=1, 2, ..., by an expansion of the form
Kvﬁ (45 (8y)) > {z € Z: (thz(“v, 2*)~+A(0&V, 2*)Az 4+ AZH (@, 2% AZ<®V12(GV’ W) H (13)

D (0, 2%) °
A, 2%) = (—OZV__)

7O, (@, 2*)
H(ay, %)= (____a_z_v___

)(nle)’

=20y, 2 —d (o, 2Y));
)(pzw U@y, ) I (@, 2

1 [ (o)t

being an information matrix;

()

@ 3
I (ay, 2%) = f (¥ — Yo w)’——ﬁ’;@— day (+),
. ()ek 0z
Az =z — 2%, i‘ do, (+) = 1.

(el

At the point z* (the minimum in the functional ‘DVI (%, 2) ), the following condition applies
~ 2 .

[18]: H(ay, 2¥)=2I(n,, 2*)+0(6,) . The Hessian H (a,, 2*) is related to the Gaussian curva-
ture of the surface at point z* formed by the functional (DV, (¢, 2) in the space Z x R:
2

Py :
Koy, 2%)=T]%=1H(, 2*0IC (e, 2*)|, where C(x,, z*) is the first quadratic form of that

s ; i 7
surface at z*. Therefore, one can give a new geometrical representation for the D planning

optimality ecriterion [8, 18]: det ] (o, z*)z—é—]{(av, z*). , which enables us to formulate more

clearly the conditions for optimal conditioning in these problems and the specifications for
the observation plan in order to meet these conditions. As the quasisolution sets of (7) for
problems Ia)-Ic) and ITa)-IIg) are dependent on ey, we call observation plan ey* locally even-
optimal if for y; (e;) and for space Vﬂ the following conditions are obeyed simultaneously:

1) the directions of the principal curvatures u; i=1, p, coincide with the coordinate
axes in Z formed by the unknown components of vector z;

2) the values of the principal curvatures are equal: *min/¥max =1 3 and
3) the Gaussian curvature is maximal: K (ay, 2z*) =  max K(a,, z*).

ay:fday=r
D

The following quantitative criteria are proposed for obedience to the even-optimality obser-
vation-plan conditions (uncorrelated and equally accurate estimators, and minimality in the
volume of the quasisolution set) for problems Ia)-Ic) and IIa)-IIg):

1) a criterion for estimator independence (plan orthegonality) [18]
Py Py

W (1) = det IiT] D% Iy = U 0, (14)
¢

2) a criterion for estimator equal accuracy (E criterion)

E (Iy) = Min () Amax (Ty), . (1) (15)

being an eigenvalue of Iy, and

3) a criterion for minimality in the volume of the quasisolution set (D criterion)
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(9)
GUIy) = paf max d(y, Oy ~ D)= detly, (16)
Desy ‘

where

d(, 9, =Sp (ay( )(—-—— (& @(,) i (-—%&3 @),‘.))), (Ies,

Criteria W, E, and G take values in the range [0, 1]. The value zero for any of them
corresponds to degeneracy in the problem, while the value one means obdeience to the condi-
tion for equal optimality in the plan corresponding to this criterion. On the basis of (14)-
(16), we take the criterion for equal optimality as follows [18]

R (1) = (W (1)) + 1gE (1) + oG Ty + B =+ Bo), (17)
where p are weighting factors chosen to suit the specific case.

Criteria W, E, G, and R may not attain the value one on any ey in a particular case. On
the other hand, for each value of Wk, E&%  (G#k R¥¥ realized on a certain observation plan
ey, there may exist a set of different observation plans {ev}“ including those realized on
different nets of the functions {Sp1 Sea ...} 5 Therefore, one can say that there are class-
es of locally equivalent observation spaces Vﬁﬁyw ,,,, gz+» for a given problem (in the sense of
a selected criterion or criterla), and also that there is an optimal pair (also not unique)
of spaces {Z, VQ} , where by V/* one understands any such observation space in which there
exist a net SV* ahd a measure av* on this net such that @(QJQ;Q,z*»::;naxe(gxaw,z*»,

r r

& 1
v,

where @={W, E, G, R}.

NOTATION

t, time; x, phase locus coordinates (part 1), geometrical coordinates (part II); X, set
of phase 10c1 (part 1), geometrical domain (part II); k, k, physical constants vector; u, con-
trol vector (part I), vector function (solution to system (8)), (part II); S, time net; Sy,
initial condition net (part I), domain X net (part II); Su» control net; M; model operator;

K, R K , set of values for the physical constants; U, control set; Y, set of process trace
loci; yg, observation on the trace; §, error; z, set of constants and initial conditions
(part I), set of constants, initial and boundary conditioms (part II); &(*), discrepancy
functional; p(*), space metrics; e, experimental design: S, experimental design net; a, ex—
perimental design measure; D, region of experiments; () , function {o(#)} , basic space of
functions @(} 3 Ty, Ty, arguments of parametric curves in X and U; ¢y, observation design:
Sy, observation design netj ay, observation design measure; Vrz, generalized space with met— . :
rics of (5) and (11); K. (ys(e)) , set of quasisolutions; w, initial conditions; Q(+) , set of
initial conditions; y, boundary condition; y(:), set of boundary conditions; w(p,), w(p Y
parameter~dependent initial and boundary conditions: Sys initial condition net; §,, initial
boundary condition net; S, , net of basic-space functions; A(*), discrepancy functional gra-
dient; H{+), Hesse matrix of discrepancy functional; Iy, information matrix; Jy, observation-
dependent part of Hesse matrix H(*); C(ay, 2%), first quadratic form of the surface; K{ay,
z*), Gaussian curvature of discrepancy functional surface; %y, principal curvatures of dis-
crepancy functional surface; W, E, G, and R, design optimality criteria; u, welighting fac-
tors.
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