
OBSERVATION PLANNING IN IDENTIFYING DYNAMIC PROCESSES 

A. G. Pogorelov UDC 517.946 

The observation plan concept [7] is considered as a generalization of the ex- 
periment-plan concept [8] for soluble problems in identifying processes with 
lumped parameters [1-3] and distributed ones [4-6]. 

I ,  
be known for a process by virtue of a hypothesis on the mechanism: 

[ x , = f ( k ,  x, u, t), tES, c[O, TI, xEX=R~+, kEKcR~-, 

Ix(O)=xoES:c=X; uESu=UcR~,f(.)ECQ([O, TI•215215 ~.~oo, 

[ g ( t ) = g ( x ) E Y = C Q ( [ T  ', T"]xK•215 Rm), O ~ T ' < T " ~ T ,  rn~n, 

where the  d e f i n i n g  o p e r a t o r  f o r  the  model M i s :  K x x x u  >Y. 

(I) : 

y~ (t) 

Processes with Lumped Parameters. I ~ C~neral model form, Let the model structure 

(I) 

2 ~ Identification Problems, One can formulate the following problems for the model of 

3 ~. Experiment Plan. 
net S and the plan measure 

a) estimation: Mk=y6, x~l(S~,u*6S=, kEK, g6=g( t ) -56 ,  ~; ~ is the observation error , 

6 r a c c  Q([T', T " I • 2 1 5  • U; R~), Q < Q ;  
b) o b s e r v a t i o n  p r o b l e m s  [9]:  Mxo=9~, u*CSu, Ie*EK, xoEX, g~CYa; 
c) joint observation and estimation [I0] : Mz = gs, u*(5'~, z := {x0, k}EZ=--X X K, F~EY6. 

The solution amounts to solving the extremal problem 

r Lp (Z) ---- PLp ( Mz ,  y(j) V rain. (2) 

For the  model of  (1) ,  the  exper iment  p lan  e i s  t he  s e t  o f  t he  p lan  
(normal ized weigh ts  f o r  the  ne t  nodes S):  

~--{S, ~}, (3) 

where S = S x  x S u x S t ~ - - - - - X x U x  [0, T]. 

4 ~ Observa t ion  P lan .  For problems a ) - c ) ,  the  da t a  sources  a re  no t  on ly  t he  obse rva -  
t i o n s  y ~ ( t ) .  One can t ake  the  graphs fo r  t he  f u n c t i o n  and i t s  d e r i v a t i v e s  (by the  use o f  r e -  
covery methods) [ii, 12] and various systems of functions [13, 14] {~ (/)}/ ------- {/ = I: 6(t~--0, /=2: 
t ~ exp(--~it), ] = 3: (~1(t)' ~i~ (t))---- 8h~, .... i = I, 2 .... } ~ {~(t)} from a certain basic space 
{~(t)} for the following quantities derived from the basis of y~(t), tE[T', T"] ; (., opt(t)), 

(q) (q) (q) (q) oqy8 
(., ~(T=)), (., ~(Tu)), , where (.)  denotes the observation functions Y%, Y~(x)' Ya~(U)' Y~(.)= 0(.)q ' 

2 q = 0, I, 2 . . . . .  Tx, Tu being the arguments in the parametric specif icat ion of certain selected 
curves Yx, Yu in the sets X and U: x0(~=)=yx(T=), u(~u)=y~(Tu). 

On this basis, the observation plan eV is the set 

~v = {Sv, r (4) 

where Sv--SxxSuxStxS ~ is the observation net, S~{~(.)} is the function net, and ~V is 
the observation plan measure [7]. 

*Here and subsequently, an asterisk means that the quantity is fixed. 
#Instead of double subscripts to T, we use T(-), e.g., T(x) - T x. 
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The observation planning problem consists in choosing S v and ~V on the basis of optimal- 
ity criteria considered below. Then the solution to a)-c) on the optimal plan eV* amounts 
to solving an extremal problem analogous to (2), but considered in the generalized denumera- 
b l e  normed  s p a c e  V ~ - H V ~ ,  r=  t, 2 ..... l= t ( i ,  ], q), 

l -  

* --9- " CDvt ~ (z) =--- 9vt ~ (Ml~,vz, y~ (ev)) In, n, (5) 

where V~r is defined by the metric 

"f" ~t (q) (q) " 
~'Yl, y ~  W~, pv~(V~ , W) --= ( X  j ~ Y2,vt ' q~ (t))l~ d t +  

iiqv T" 

TX Tit 

j: o~tX (q) (q) . 

'gx "~'~ 

{ q )  " _ \ l / r ,  

On runnin~ through the subscripts i, j, and q in some ordered fashion for the values in the 
metric 9~ ('), we get a chain of embedded observation spaces 

L p = - - V ~ V ~ . . , ~  V~D . . . .  p------r=l,  2 . . . . .  (6) 

which implies ordering in the corresponding problems of a)-c) for the sets of quasisolutions 
[7 ,  15] 

K~ (y~(~v)) ~ Kv~ (Y~ (~)) =- - -  = ~ y  (y~ (~)), (7) 

where Kv~(.) is defined in accordance with [7, 13, 15] as 

Kv~ (y~ (~v))-~ (z C z: ov~ (%@ w (~0) < %~ (~, a)}, 

t-~t ,  2 . . . . .  t~<oo; 

where Zj is the index to the last space in the chain of (6) for which the error ~ still al- 
lows us to obtain the corresponding V~f data sources. 

II. Processes with Distributed Parameters. 1 ~ C~neral process model, Let the model 
structure be known, the general form being 

ht = F(k, u, 4 .  h~ ,  t), t E [0, TI, x EX c R~, 

1 ~<t< oo, kEK= R$, 

u ~ = (u~ . . . . .  an), u~ (t, x) E C ~ (D), /9 ~ [0, T] • X, 

~<oo, a x =  U L - - r ,  

( 8 )  

where u is the solution to (8), x is the geometrical'coordinate vector, and k is the physical- 
constant one. The physically realizable initial conditions u(0, x) :----oEf~(X) , and boundary 
conditions ~(~ u(t, x))= O, ~6f(~ R$, x EF, t 6[0, T], bEeF([0, T] X F), are used with the values 
of the vectors k and k in the formulations for the problems a)-g) considered below, where 
they may or may not be known. Let F(.), g'('), X__~X, f_.~f, ~p_~, ~'p_~IF (~ and ~p are 
subsets of the parametrically specified initial and boundary conditions, including cases of 

= �9 po~ 6 P~o ~ R ~}, ~Fp {~pp q~ (P,)  : P ,  E P ,  ~ R ~ }, problems with mobile boundaries Qp {o)p =m(po)" s = = 
n~s. < oo ) be such that the trace vector functions in the model of (8) 9r(t, x)-~ gr (u(t, x)) 
and /(t, ~)= gx(u(t, x)) have the necessary smoothness order, i.e., 

gr(u(t, x))CYcC6([T ', r"l • _F• ~qp(X~ • Tp([0, T] • K• /~, ~ f ,  ~7_~X, 

g~(u(t, x))EYcCQ([T ', T ~1 • X • ~p ()~)• T1 • ~)•162 
( g ' ( . ) ) r = ( g i  . . . . .  g;~.), m. ~ n ,  
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The functions gr(.) and gz(.) are possible forms of the trace for a process whose experiment- 
al observation y~(t, x) = 9(~, x)+8~Ya~CU([T ', T#] X ~X X X ~(X) X ~([0; T] • F))~• K x/Q con- 
tains an error 5. The model of (8) defines the operator M: K X ~(X) x~([0~T i x F)-~F~ 

2 ~. Identification problems. For the model of (8) we can formulate the following prob- 
lems: 

a) 

b) 

c) 

d) 

e) 

f) 
g) 

estimation: M~ y~, --{k,  k, {k, k}}, ~ K = K x K ,  o)*6Q(X), r  P ] x Y ) ,  y~Y~; 
observation problem: 1 ~ q ~  y~, r k*~K, (~E~Q(X), Y~YG 

recovery [16, 17]: M~p=N~, o)*Ee(X),  ~*EK, kEK, CE~('L 
joint estimation and recovery: M{k, ~}=Y6, ~*~Q(X), ~ 6 K ,  ~ 6 ~ ( ' ) ,  Y~Y6; 

joint observation and estimation: M{~, ~}-=g6, ~'6~('), ~ 6~(X), ~6K, y66Y6; 

joint observation and recovery: Ad{~, ~}= y6, k*6K, ~ 6e(X), r 9~6y~; 

joint observation, recovery, and estimation: A4{o, ~, ~} :-----Y6, ~e(X), ~6v~(-), ~, y66}r6. ' 

Problems b)-g) can be solved not only in the formulation of pointwise determination of 
and ~ on a certain net but also in the parametrlc-identification formulation with parametric 

specification ~p=e(p~,o), @p-~(p~) ; problems a)-g) may be solved via the extremal problems 

~')Lp (2) = f)Lp (Mz. Y6)-~' rain, (95 

....... Experiment Plan. For the model of (8), the experiment plan r is the following set: 

--= {s, 

where  S : = S  r x S ~ x S ~ x S q • 2 1 5  T ] x ~ p ( ~ ) x t Y ~ ( [ 0 ,  T] :X~);  Sr~F~--.F i s  a n e t  o f  
p o i n t s  a t  b o u n d a r y  F; , S ~ X ~ X  i s  a n e t  o f  p o i n t s  in  r eg ion~X,  a t  t he  n o d e s  o f  which  one 
e s t i m a t e s  y d ( t ,  x ) ;  S t i s  a n e t  o f  o b s e r v a t i o n  t i m e s ;  S ~ c Q ~ ( R ) ,  Sr T] X F) b e i n g  
n e t s  o f  i n i t i a l  and bounda ry  c o n d i t i o n s  c o r r e s p o n d i n g l y  S ~  Spo)~P,.,?S- $ , ' - ' S p c p r  on p a r a -  

m e t r i c  specification). The planning problem, as in the case of model (I), consists of choos- 
ing S and a (or din region D) to maximize optimality criteria considered below. 

4 ". Observation Plan. For the model of (85 and the problems of a)-g), we can use as 
data sources not only the observations y~(t, x) but also the following quantities taken by 
analogy with the model of (I): (, ~(t)), (., ~(~)), (., ~{(~)), (~, ~(%)) , where (') denotes the 

(q) (r (q) 
f o l l o w i n g  f u n c t i o n s :  y% (t, X), y~,(~) (t, x), y~(~) (t, x) (q)y~(r (t, X), tESt, x~Sr[JS~, ? . ~ : = x ( % ) ~  f U ~ ,  Y~:~ 

=p~(%)~S~P~, %,~==pr162 These data sources enable us to introduce the 

generalized denumerably normalized space V r =~ I:~, for the solution of (9)~ where Vr Z is 

defined by the metric %~y~, V ~ . . . ,  ~ ~, ~=~(i ,  i, q), r =  ~, ~, 

# 

T '~ "r 

~ I(Yl.v~-- Y~v~' (PI(X))[ ~dt: + S ~x (0) (q) 
Uqv P" 

~X 

," r (q) (q) i r _.  
�9 + J ,lqv l(Y,',v, -- Y2,v F (P' (~))i d%) -}- .!" r 

(q) 
Y~,~(r q'{ (T~'))lrd%) r/~" (Ii) 

Then the solution to a)-g) amounts to the solution on the chosen optimal observation plan 
e ~ .  {S v, ~'v}$ Sv = S X So X S~ X S~, =v.= {~:qv . . . . .  =~iqv, �9 fi~ . . . . .  =iJ~r ( i n  t he  g e n e r a l -  

i z e d  space Vr Z) for the following extremal problems: 

(z) = T m n, ( t2 )  

where  z i s  as  in  (19) and c o n d i t i o n  (7) a p p l i e d  f o r  (125 in  r e l a t i o n  to  p r o b l e m s  a ) - g ) .  
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III. Criteria for Choosing the Optimal Observation-Plan Measure. The sets of quasiso- 
lutions /(v~(. ) for the problems of (5) and (12) in the Hilbert spaces can be approximated 

Zocaliy in the region of point V2 l, Z = i, 2, ..., by an expansion of the form 

Kv~ (y~ (%)) ~-- (z C Z: q)v~ (~v, z*).-k A (o~ v, z*) hz q- hzr H (av , z*) hZ < r (a v, 6)}; (13) 

A (a  v, z*) = , Oz " ; 
�9 (pz x I) 

(02fl).(~V , Z*)) :2( '(if 'V, z*)--J(~ z')); 
H (%, Z*) = : OZ ~ (pz• 

being an information matrix; 

(q) 
(q) (7) a 2 J(%, z*)-- ~ (y ~, ~)r (Y, qO d%(.), 

(.)ca az 2 

hz = z - z*, I dctv ( " )=  I. 
( . )~  

At the point z* (the minimum in the functional ~vlz(O~v, z)~ ), the following condition applies 

[18]: H(cz V, z*) ---- 2I (a V, z*)+O(6v) . The HessianH(av, z*) is related to the Gaussian curva- 

ture of the surface at point z* formed by the functional (Pv~(av, z) in the space Z x R: 

Pz 

K(a v, z*)--]]ui=IH(czv, z*)I/IC(O~F, z*)l , where C(a V, z*) is the first quadratic form of that 

surface at z*. Therefore, one can give a new geometrical representation for the D planning 

optimality criterion [8, 18] : detl(av, z*) ~_Jl /( -- 2 (av, z*): , which enables us to formulate more 

clearly the conditions for optimal conditioning in these problems and the specifications for 
the observation plan in order to meet these conditions. As the quasisolution sets of (7) for 
problems la)-Ic) and lla)-llg) are dependent on cV, we call observation plan EV* locally even- 
optimal if for y~(ev) and for space V~* the following conditions are obeyed simultaneously: 

i) the directions of the principal curvatures • i=I, p~. coincide with the coordinate 
axes in Z formed by the unknown components of vector z; 

2) the values of the principal curvatures are equal: ~min/Umax = 1 ; and 

3) the Gaussian curvature is maximal: K(~v, z*) ---- max I((cz v, z*). 
aV : I dczV =1  

D 

The fo l l owing  q u a n t i t a t i v e  c r i t e r i a  are  proposed f o r  obedience  to the  e v e n - o p t i m a l i t y  o b s e r -  
v a t i o n - p l a n  c o n d i t i o n s  ( u n c o r r e l a t e d  and e q u a l l y  a c c u r a t e  e s t i m a t o r s ,  and m i n i m a l i t y  in  the  
volume of  the  q u a s i s o l u t i o n  s e t )  f o r  problems I a ) - I c )  and I I a ) - I I g ) :  

1) a c r i t e r i o n  f o r  e s t i m a t o r  independence (plan o r t h o g o n a l i t y )  [18] 

PZ Pz 
V 

W (Iv) = det Iv/I- ] ~ (15)', I v = (Iii)~,~x.,), 
i i 

(14) 

2) a criterion for estimator equal accuracy (E criterion) 

.E (Iv) = X~in ( ~ ) / X ~ =  (Iv) , X. (~) 
being an e i g e n v a l u e  of  I V, and 

3) a criterion for minimality in the volume of the quasisolution set (D criterion) 

(15) 
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(q) 

G(lv) = pJ  max d(y, q~)l(.) "" D(Iv) ~" det Iv' 
(.)~Sv 

(16) 

where 

Criteria W, E, and G take values in the range [0, I]. The value zero for any of them 
corresponds to degeneracy in the problem, while the value one means obdeience to the condi- 
tion for equal optimality in the plan corresponding to this criterion. On the basis of (14)- 
(16), we take the criterion for equal optimality as follows [18] 

R (I v) = (ih~,W (Iv) + 9~E (Iv) + ~GG (Iv))/(~ w + [*~ + 9a), (17) 

where ~ are weighting factors chosen to suit the specific case. 

Criteria W, E~ G, and R may not attain the value one on any EV in a particular case. On 
the other hand, for each value of W**, E**, G**, R** realized on a certain observation plan 
�9 ev, there may exist a set of different observation plans {~v},~ including those realized on 
different nets of the functions {S~,I, S%= .... } . Therefore, one can say that there are class- 

z 
es of locally equivalent observation spaces Vr/~** .... R**, for a given problem (in the sense of 
a selected criterion or criteria), and also that there is an optimal pair (also not unique) 
of spaces {Z, V~ .~} , where by V~ ~ one understands any such observation space in which there 
exist a net SV* a~d a measure aV~ on this net such that O([v(~Si/, z*))= rnax@(fv(~ r, z*)), 

F r 

where @=={W, E, G, R}. 

NOTATION 

t, time; x~ phase locus coordinates (part I), geometrical coordinates (part II); X, set 
of phase loci (part I), geometrical domain (part II); k, k, physical constants vector; u, con- 
trol vector (part I), vector function (solution to system (8)), (part II); St, time net; Sx, 
initial condition net (part I), domain X net (part II); Su, control net; M; model operator; 

~ K , set of values for the physical constants; U, control set; Y, set of process trace 
loci; Y6' observation on the trace; 6, error; z, set of constants and initial conditions 
(part I), set of constants, initial and boundary conditions (part II); ~('), discrepancy 
functional; p('), space metrics; e, experimental design; S, experimental design:net; ~, ex- 
perimental design measure; D, region of experiments; W() , function ~(0} , basic space of 
functions ~(~) ; T x, Tu, arguments of parametric curves in X and U; c V, observation deslgn~ 
SV, observation design net; ~V, observation design measure; Vr Z, generalized space with met-~ 
rics of (5) and (ii); K (y~(e)) , set of quasisolutions; ~, initial conditions; ~(.) , set of 
initial conditions; ~, boundary condition; ~(.), set of boundary conditions; ~(p~), ~(p~), 
parameter-dependent initial and boundary conditions: S~, initial condition net; S@, initial 
boundary condition net; s~ , net of basic-space functions; A('), discrepancy functional gra- 
dient; H('), Hesse matrix of discrepancy functional; IV, information matrix; JV, observation- 
dependent part of Hesse matrix H('); C(~V, z*), first quadratic form of the surface; K(~V, 
z*), Gaussian curvature of discrepancy functional surface;~ i, principal curvatures of dis- 
crepancy functional surface; W, E, G, and R, design optimality criteria; ~, weighting fac- 
tors. 
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